Get hands-on skills for a career in data science. Learn Python, analyze and visualize data. Apply your skills to data science and machine learning.
Beginner Level • Flexible schedule 2 months at 10 hours a weekLearn at your own pace • Flexible Schedule
Earn a shareable certificate to add to your LinkedIn profile
Kickstart your Python journey with this beginner-friendly, self-paced course taught by an expert. Python is one of the most popular programming languages, and the demand for individuals with Python skills continues to grow. This course takes you from zero to programming in Python in a matter of hours—no prior programming experience is necessary! You’ll begin with Python basics, including data types, expressions, variables, and string operations. You will explore essential data structures such as lists, tuples, dictionaries, and sets, learning how to create, access, and manipulate them. Next, you will delve into logic concepts like conditions and branching, learning how to use loops and functions, along with important programming principles like exception handling and object-oriented programming. As you progress, you will gain practical experience reading from and writing to files and working with common file formats. You’ll also use powerful Python libraries like NumPy and Pandas for data manipulation and analysis. The course also covers APIs and web scraping, teaching you how to interact with REST APIs using libraries like requests and extract data from websites using BeautifulSoup. You will practice and apply what you learn through hands-on labs using Jupyter Notebooks. By the end of this course, you’ll feel comfortable creating basic programs, working with data, and automating real-world tasks using Python. This course is suitable for individuals interested in pursuing careers in Data Science, Data Analytics, Software Development, Data Engineering, AI, and DevOps and a variety of other technology-related roles.
This mini-course is intended to for you to demonstrate foundational Python skills for working with data. This course primarily involves completing a project in which you will assume the role of a Data Scientist or a Data Analyst and be provided with a real-world data set and a real-world inspired scenario to identify patterns and trends. You will perform specific data science and data analytics tasks such as extracting data, web scraping, visualizing data and creating a dashboard. This project will showcase your proficiency with Python and using libraries such as Pandas and Beautiful Soup within a Jupyter Notebook. Upon completion you will have an impressive project to add to your job portfolio. PRE-REQUISITE: **Python for Data Science, AI and Development** course from IBM is a pre-requisite for this project course. Please ensure that before taking this course you have either completed the Python for Data Science, AI and Development course from IBM or have equivalent proficiency in working with Python and data. NOTE: This course is not intended to teach you Python and does not have too much instructional content. It is intended for you to apply prior Python knowledge.
Analyzing data with Python is a key skill for aspiring Data Scientists and Analysts!This course takes you from the basics of importing and cleaning data to building and evaluating predictive models. You’ll learn how to collect data from various sources, wrangle and format it, perform exploratory data analysis (EDA), and create effective visualizations. As you progress, you’ll build linear, multiple, and polynomial regression models, construct data pipelines, and refine your models for better accuracy. Through hands-on labs and projects, you’ll gain practical experience using popular Python libraries such as Pandas, NumPy, Matplotlib, Seaborn, SciPy, and Scikit-learn. These tools will help you manipulate data, create insights, and make predictions. By completing this course, you’ll not only develop strong data analysis skills but also earn a Coursera certificate and an IBM digital badge to showcase your achievement.
One of the most important skills of successful data scientists and data analysts is the ability to tell a compelling story by visualizing data and findings in an approachable and stimulating way. In this course you will learn many ways to effectively visualize both small and large-scale data. You will be able to take data that at first glance has little meaning and present that data in a form that conveys insights. This course will teach you to work with many Data Visualization tools and techniques. You will learn to create various types of basic and advanced graphs and charts like: Waffle Charts, Area Plots, Histograms, Bar Charts, Pie Charts, Scatter Plots, Word Clouds, Choropleth Maps, and many more! You will also create interactive dashboards that allow even those without any Data Science experience to better understand data, and make more effective and informed decisions. You will learn hands-on by completing numerous labs and a final project to practice and apply the many aspects and techniques of Data Visualization using Jupyter Notebooks and a Cloud-based IDE. You will use several data visualization libraries in Python, including Matplotlib, Seaborn, Folium, Plotly & Dash.
This is the final course in the IBM Data Science Professional Certificate as well as the Applied Data Science with Python Specialization. This capstone project course will give you the chance to practice the work that data scientists do in real life when working with datasets. In this course you will assume the role of a Data Scientist working for a startup intending to compete with SpaceX, and in the process follow the Data Science methodology involving data collection, data wrangling, exploratory data analysis, data visualization, model development, model evaluation, and reporting your results to stakeholders. You will be tasked with predicting if the first stage of the SpaceX Falcon 9 rocket will land successfully. With the help of your Data Science findings and models, the competing startup you have been hired by can make more informed bids against SpaceX for a rocket launch. In this course, there will not be much new learning, instead you’ll focus on hands-on work to demonstrate and apply what you have learnt in previous courses. By successfully completing this Capstone you will have added a project to your data science and machine learning portfolio to showcase to employers.
To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood.
I directly applied the concepts and skills I learned from my courses to an exciting new project at work.
When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go.
Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits.