CertNexus Certified Artificial Intelligence Practitioner

Be an Artificial Intelligence Practitioner.. Master strategies to implement Artificial Intelligence techniques in order to solve business problems.

Instructor: Renée Cummings , Megan Smith Branch , Stacey McBrine , Anastas Stoyanovsky

Intermediate Level • 2 months to complete at 10 hours a week • Flexible Schedule

What You'll Learn

  • Learn about the business problems that AI/ML can solve as well as the specific AI/ML technologies that can solve them.
  • Learn important tasks that make up the workflow, including data analysis and model training and about how machine learning tasks can be automated.
  • Use ML algorithms to solve the two most common supervised problems regression and classification, and a common unsupervised problem: clustering.
  • Explore advanced algorithms used in both machine learning and deep learning. Build multiple models to solve business problems within a workflow.

Skills You'll Gain

Random Forest Algorithm
Productivity
Statistical Analysis
Learning Strategies
Data Collection
Linear Algebra
Applied Machine Learning
Machine Learning Algorithms
Unsupervised Learning
Decision Tree Learning
Compliance Management
Registration

Shareable Certificate

Earn a shareable certificate to add to your LinkedIn profile

Outcomes

  • Receive professional-level training from CertNexus
  • Demonstrate your technical proficiency
  • Earn an employer-recognized certificate from CertNexus
  • Prepare for an industry certification exam

5 courses series

Artificial intelligence (AI) and machine learning (ML) have become an essential part of the toolset for many organizations. When used effectively, these tools provide actionable insights that drive critical decisions and enable organizations to create exciting, new, and innovative products and services.This is the first of four courses in the Certified Artificial Intelligence Practitioner (CAIP) professional certification. This course is meant as an entry point into the world of AI/ML. You'll learn about the business problems that AI/ML can solve, as well as the specific AI/ML technologies that can solve them. In addition, you'll get an overview of the general workflow involved in machine learning, as well as the tools and other resources that support it. This course also promotes the importance of ethics in AI/ML, and provides you with techniques for addressing ethical challenges. Ultimately, this course will get you thinking about the "why?" of AI/ML, and it will ensure that your more technical work in later courses is done with clear business goals in mind.

Machine learning is not just a single task or even a small group of tasks; it is an entire process, one that practitioners must follow from beginning to end. It is this process—also called a workflow—that enables the organization to get the most useful results out of their machine learning technologies. No matter what form the final product or service takes, leveraging the workflow is key to the success of the business's AI solution. This second course within the Certified Artificial Intelligence Practitioner (CAIP) professional certificate explores each step along the machine learning workflow, from problem formulation all the way to model presentation and deployment. The overall workflow was introduced in the previous course, but now you'll take a deeper dive into each of the important tasks that make up the workflow, including two of the most hands-on tasks: data analysis and model training. You'll also learn about how machine learning tasks can be automated, ensuring that the workflow can recur as needed, like most important business processes. Ultimately, this course provides a practical framework upon which you'll build many more machine learning models in the remaining courses.

In most cases, the ultimate goal of a machine learning project is to produce a model. Models make decisions, predictions—anything that can help the business understand itself, its customers, and its environment better than a human could. Models are constructed using algorithms, and in the world of machine learning, there are many different algorithms to choose from. You need to know how to select the best algorithm for a given job, and how to use that algorithm to produce a working model that provides value to the business.This third course within the Certified Artificial Intelligence Practitioner (CAIP) professional certificate introduces you to some of the major machine learning algorithms that are used to solve the two most common supervised problems: regression and classification, and one of the most common unsupervised problems: clustering. You'll build multiple models to address each of these problems using the machine learning workflow you learned about in the previous course. Ultimately, this course begins a technical exploration of the various machine learning algorithms and how they can be used to build problem-solving models.

There are numerous types of machine learning algorithms, each of which has certain characteristics that might make it more or less suitable for solving a particular problem. Decision trees and support-vector machines (SVMs) are two examples of algorithms that can both solve regression and classification problems, but which have different applications. Likewise, a more advanced approach to machine learning, called deep learning, uses artificial neural networks (ANNs) to solve these types of problems and more. Adding all of these algorithms to your skillset is crucial for selecting the best tool for the job.This fourth and final course within the Certified Artificial Intelligence Practitioner (CAIP) professional certificate continues on from the previous course by introducing more, and in some cases, more advanced algorithms used in both machine learning and deep learning. As before, you'll build multiple models that can solve business problems, and you'll do so within a workflow. Ultimately, this course concludes the technical exploration of the various machine learning algorithms and how they can be used to build problem-solving models.

What is a certification? How is it different than a certificate or credential? This mini-course will answer these questions and provide learners direction on how to prepare for a certification exam from CertNexus or an other certification vendor. It includes tips and tricks to succeed in your journey towards certification, as well as step by step instructions how to schedule and take your exam, whether in person or online. In addition we will provide next steps after your certification, including posting your badge to social posts and your organization. Candidates with industry recognized certifications can earn up to 25% more than candidates without a certification. Learn how to successfully prepare for, pass, and share your certification.

Learner Testimonials

Felipe M.
Felipe M. • Learner since 2018

To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood.

Jennifer J.
Jennifer J. • Learner since 2020

I directly applied the concepts and skills I learned from my courses to an exciting new project at work.

Larry W.
Larry W. • Learner since 2021

When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go.

Chaitanya A.
Chaitanya A. • Learner since 2727

Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits.