Introduction to Containers w/ Docker, Kubernetes & OpenShift
Instructor: Alex Parker , Upkar Lidder
Intermediate Level • 7 hours to complete • Flexible Schedule
What You'll Learn
- Using containers, learn how to move applications quickly across any environment.
- Build cloud native applications using Docker, Kubernetes, OpenShift, and Istio.
- Describe and leverage Kubernetes architecture to set up and use an entire lifecycle-based container management system.
- Create and leverage a YAML deployment file to configure and create resources such as pods, services, replicasets, and others in a declarative way.
Skills You'll Gain
Virtualization
Microservices
Containerization
CI/CD
Command-Line Interface
Istio
OpenShift
DevOps
YAML
Cloud-Native Computing
Kubernetes
Application Deployment
Docker (Software)
Scalability
Shareable Certificate
Earn a shareable certificate to add to your LinkedIn profile
Outcomes
-
Learn new concepts from industry experts
-
Gain a foundational understanding of a subject or tool
-
Develop job-relevant skills with hands-on projects
-
Earn a shareable career certificate from IBM
There are 5 modules in this course
Start your first week by learning about container concepts, features, use cases, and benefits. Building on your new knowledge of containers, you’ll learn what Docker does and discover why Docker is a winner with developers. You’ll learn what Docker is, become acquainted with Docker processes, and explore Docker’s underlying technology. Learn about how developers and organizations can benefit from using Docker and see which situations are challenging for using Docker.
Next, learn how to build a container image using a Dockerfile, how to create a running container using that image, become familiar with the Docker command line interface (CLI), and explore frequently used Docker commands. You’ll become knowledgeable about Docker objects, Dockerfile commands, container image naming, and learn how Docker uses networks, storage, and plugins. Then, assimilate this knowledge when you see Docker architecture components in action and explore containerization using Docker. At the end of this first week, you’ll pull an image from a Docker Hub registry. You’ll run an image as a container using Docker, build and tag an image using a Dockerfile, and push that image to a registry.
In week two, learn what container orchestration is. Then, explore how developers can use container orchestration to create and manage complex container environment development lifecycles. Kubernetes is currently the most popular container orchestration platform. You’ll examine key Kubernetes architectural components, including control plane components and controllers.
Explore Kubernetes objects, and learn how specific Kubernetes objects such as Pods, ReplicaSets, and Deployments work. Then, learn how developers use the Kubernetes command line interface (CLI), or “kubectl” to manipulate objects, manage workloads in a Kubernetes cluster, and apply basic kubectl commands. You’ll be able to differentiate the benefits and drawbacks of using imperative and declarative commands.
At the end of this module, you will use the kubectl CLI commands to create resources on an actual Kubernetes cluster. At the end of this week, you’ll use the Kubernetes CLI to create a Kubernetes pod, create a Kubernetes deployment, create a ReplicaSet and see Kubernetes load balancing in action.
In week three, you’ll explore ReplicaSets, autoscaling, rolling updates, ConfigMaps, Secrets, and service bindings, and learn how you can use these capabilities to manage Kubernetes applications. You’ll learn how ReplicaSets scale applications to meet increasing demand, and how autoscaling creates dynamic demand-based scaling.
You’ll see how to use rolling updates to publish application updates and roll back changes without interrupting the user experience. You’ll learn how to use ConfigMaps and Secrets to provide configuration variables and sensitive information to your deployments and to keep your code clean. At the end of the week, you’ll scale and update applications deployed in Kubernetes.
In week four, you’ll learn more about the growing Kubernetes ecosystem and explore additional tools that work well with Kubernetes to support cloud-native development. You’ll gain an understanding of the similarities and differences between Red Hat ® OpenShift® and Kubernetes and see what OpenShift architecture looks like. You’ll learn about OpenShift builds and BuildConfigs, and OpenShift build strategies and triggers. You'll also discover how operators can deploy whole applications with ease.
Finally, you’ll examine how the Istio service mesh manages and secures traffic and communication between an application’s services. At the end of the week, you’ll use the oc CLI to perform commands on an OpenShift cluster. And you’ll use the OpenShift build capabilities to deploy an application from source code stored in a Git repository.
For the Final Project, you will put into practice the tools and concepts learned in this course, and deploy a simple guestbook application with Docker and Kubernetes. The entire application will be deployed and managed on OpenShift.