Introduction to Data Analytics
Instructor: Rav Ahuja
Beginner Level • 4 hours to complete • Flexible Schedule
What You'll Learn
- Explain what Data Analytics is and the key steps in the Data Analytics process
- Differentiate between different data roles such as Data Engineer, Data Analyst, Data Scientist, Business Analyst, and Business Intelligence Analyst
- Describe the different types of data structures, file formats, and sources of data
- Describe the data analysis process involving collecting, wrangling, mining, and visualizing data
Skills You'll Gain
Data Warehousing
Big Data
Relational Databases
Apache Spark
Data Lakes
Data Visualization Software
Data Cleansing
Apache Hadoop
Data analysis
Statistical Analysis
Apache Hive
Shareable Certificate
Earn a shareable certificate to add to your LinkedIn profile
Outcomes
-
Learn new concepts from industry experts
-
Gain a foundational understanding of a subject or tool
-
Develop job-relevant skills with hands-on projects
-
Earn a shareable career certificate
There are 5 modules in this course
In this module, you will learn about the different types of data analysis and the key steps in a data analysis process. You will gain an understanding of the different components of a modern data ecosystem, and the role Data Engineers, Data Analysts, Data Scientists, Business Analysts, and Business Intelligence Analysts play in this ecosystem. You will also learn about the role, responsibilities, and skillsets required to be a Data Analyst, and what a typical day in the life of a Data Analyst looks like.
In this module, you will learn about the different types of data structures, file formats, sources of data, and the languages data professionals use in their day-to-day tasks. You will gain an understanding of various types of data repositories such as Databases, Data Warehouses, Data Marts, Data Lakes, and Data Pipelines. In addition, you will learn about the Extract, Transform, and Load (ETL) Process, which is used to extract, transform, and load data into data repositories. You will gain a basic understanding of Big Data and Big Data processing tools such as Hadoop, Hadoop Distributed File System (HDFS), Hive, and Spark.
In this module, you will learn about the process and steps involved in identifying, gathering, and importing data from disparate sources. You will learn about the tasks involved in wrangling and cleaning data in order to make it ready for analysis. In addition, you will gain an understanding of the different tools that can be used for gathering, importing, wrangling, and cleaning data, along with some of their characteristics, strengths, limitations, and applications.
In this module, you will learn about the role of Statistical Analysis in mining and visualizing data. You will learn about the various statistical and analytical tools and techniques you can use in order to gain a deeper understanding of your data. These tools help you to understand the patterns, trends, and correlations that exist in data. In addition, you will learn about the various types of data visualizations that can help you communicate and tell a compelling story with your data. You will also gain an understanding of the different tools that can be used for mining and visualizing data, along with some of their characteristics, strengths, limitations, and applications.
In this module, you will learn about the different career opportunities in the field of Data Analysis and the different paths that you can take for getting skilled as a Data Analyst. At the end of the module, you will demonstrate your understanding of some of the basic tasks involved in gathering, wrangling, mining, analyzing, and visualizing data.