In this module, you will explore two foundational statistical modeling methods, linear regression and logistic regression, which are considered classical machine learning models. Linear regression, often applied in real-world problem-solving, models a linear relationship between independent variables and a dependent variable. Logistic regression, an extension of linear regression, functions as a classifier and can handle nonlinear relationships through input transformation. By implementing these models, you'll gain insight into their limitations and better understand the advancements offered by modern machine learning models.