Explore and summarize a dataset
Use probability distributions to model data
Conduct a hypothesis test to identify insights about data
Perform statistical analyses using Python
Earn a shareable certificate to add to your LinkedIn profile.
Learn new concepts from industry experts
Gain a foundational understanding of a subject or tool
Develop job-relevant skills with hands-on projects
Earn a shareable career certificate from Google
You’ll explore the role of statistics in data science and identify the difference between descriptive and inferential statistics. You’ll learn how descriptive statistics can help you quickly summarize a dataset and measure the center, spread, and relative position of data.
You’ll learn the basic rules for calculating probability for single events. Next, you’ll discover how data professionals use methods such as Bayes’ theorem to describe more complex events. Finally, you’ll learn how probability distributions such as the binomial, Poisson, and normal distribution can help you better understand the structure of data.
Data professionals use smaller samples of data to draw conclusions about large datasets. You’ll learn about the different methods they use to collect and analyze sample data and how they avoid sampling bias. You’ll also learn how sampling distributions can help you make accurate estimates.
You’ll explore how data professionals use confidence intervals to describe the uncertainty of their estimates. You'll learn how to construct and interpret confidence intervals, and how to avoid some common misinterpretations.
Hypothesis testing helps data professionals determine if the results of a test or experiment are statistically significant or due to chance. You’ll learn about the basic steps for any hypothesis test and how hypothesis testing can help you draw meaningful conclusions about data.
In this end-of-course project, you’ll use statistical methods such as hypothesis testing to analyze a workplace scenario dataset.