Interpretable Machine Learning

Intermediate Level
1 week to complete at 10 hours a week
Flexible Schedule

Brinnae Bent, PhD

What You’ll Learn

Describe and implement regression and generalized interpretable models

Demonstrate knowledge of decision trees, rules, and interpretable neural networks

Explain foundational Mechanistic Interpretability concepts, hypotheses, and experiments

Skills You’ll Gain

Data Ethics Natural language processing Large Language Modeling Predictive Modeling Machine Learning Deep Learning Algorithms Artificial Intelligence and Machine Learning (AI/ML) Decision Tree Learning Statistical Modeling Applied Machine Learning Python Programming Regression Analysis Artificial Neural Networks

Shareable Certificate

Earn a shareable certificate to add to your LinkedIn profile.

Develop Your Specialized Knowledge

Learn new concepts from industry experts

Gain a foundational understanding of a subject or tool

Develop job-relevant skills with hands-on projects

Earn a shareable career certificate

There are 3 modules in this course

In this module, you will be introduced to the concepts of regression and generalized models for interpretability. You will learn how to describe interpretable machine learning and differentiate between interpretability and explainability, explain and implement regression models in Python, and demonstrate knowledge of generalized models in Python. You will apply these learnings through discussions, guided programming labs, and a quiz assessment.

In this module, you will be introduced to the concepts of decision trees, decision rules, and interpretability in neural networks. You will learn how to explain and implement decision trees and decision rules in Python and define and explain neural network interpretable model approaches, including prototype-based networks, monotonic networks, and Kolmogorov-Arnold networks. You will apply these learnings through discussions, guided programming labs, and a quiz assessment.

In this module, you will be introduced to the concept of Mechanistic Interpretability. You will learn how to explain foundational Mechanistic Interpretability concepts, including features and circuits; describe the Superposition Hypothesis; and define Representation Learning to be able to analyze current research on scaling Representation Learning to LLMs. You will apply these learnings through discussions, guided programming labs, and a quiz assessment.